Unit 6

Non Regular Languages
The Pumping Lemma

Reading: Sipser, chapter 1
Are all languages regular?

• No!
 – Most of the languages are not regular!
• Why?
 – A finite automaton has limited memory.
• How can we show that a language is regular?
• How can we show that a language is not-regular?
Finite Languages

- **Theorem**: If L is finite then L is regular.

- **Proof idea**:
 - Build an automaton for every word w in L: $A(w)$.
 - Add q_{start} with ε-transitions to every initial state of $A(w)$
 - The resulting automaton recognizes L.
What About Infinite Languages?

• Infinite language could be regular or non-regular

• Example of an infinite regular language:
 \[L = \{0^n1^m \mid n,m > 0\} \]

• Example of a non-regular language:
 \[L = \{0^n1^m \mid m > n\} \]
Example of an infinite non-regular language

The language $L = \{0^n1^m \mid m > n\}$ is not regular.

- It is *not regular because* when we reach substring of 1’s we have to remember the length of the 0’s substring.
- The length is remembered by states - one state for each letter.
- The length of the 0's prefix can be any number.
- A finite automaton has a finite number of states. So it cannot remember the length of 0’s prefix.
The Pumping Lemma

- The central theorem concerning regular languages.
- It determines the basic nature of regular languages.
- Any regular language satisfies the Lemma.
- A language that does not satisfy the Lemma must be non-regular.
The Pumping Idea

- Assume an automaton with n states.
- Any word w, |w| \(\geq n \) must include a ‘loop’.
- Denote the part before the loop by x.
- The loop is y.
- The part after the loop is z.
- The z part ends with an accepting state as the word is in L.
The Pumping Idea (cont.)

- The loop can be repeated any number of times and still go through z to an accepting state.
- Hence the y part can be pumped.
- We can repeat the loop any number of times and still proceed through z to accepting state.
The Pumping Lemma

Lemma: If \(L \) is a regular language then **there is a** number \(n \) such that **any** string \(w \in L \), where \(|w| \geq n\), **can** be divided into three parts \(w=xyz \) such that:

1. \(|y|>0\)
2. \(|xy| \leq n\)
3. For each \(i \geq 0 \) \(xy^i z \in L \)
Informally

• For each regular language there is a constant number n, such that any string of length more than n can be pumped.

• The pumped part (y) should not be of length 0 (at least one letter).

• The parts before and after the "pumpable" part (x,z) could be ε.

• The part we may pump is inside a prefix (xy) of length at most n.
Formal Proof

• Let M be a DFA that recognizes L. Let n be the number of states of M.
• Let w be a string in L of length at least n.
• It has a prefix of length n. The sequence of states in automaton M that we go through while processing the prefix is q_0 and one state for each letter read.
• After reading this prefix we have a sequence of $n+1$ states.
Formal Proof (cont.)

- As there are only n different states in automaton M at least one state has to be repeated while reading the prefix.
- Denote one of them r.
- Let x be the prefix of w read before first appearance of r.
- Let y be the substring of y read between first and second appearance of r.
- And let z be the substring of w read after second appearance of r till the end w.
Formal Proof (cont.)

• z ends with an accepting state f because the string is in L.

• y is a loop in the automaton.

• y has at least length 1 because we move from state to state in the DFA only upon reading a letter.
Formal Proof (cont.)

• As there is a path from \(r \) to an accepting state \(f \) there is a direct path \(q_0 \rightarrow r \rightarrow f \) without going through the \(r \) loop even once (\(xy^0z=xz \)).

• On the other hand we can go through the loop more than once and still get out from \(r \) to \(f \) (\(xy^i z \)).

• There is no limit on a number of times we can go through the loop .

Q.E.D.
Example of an infinite languages automaton

$L = ab^*c$

Each word in L consists of a path $q_0 \to q_1$ followed by any number of loops on q_1, followed by a path $q_1 \to q_2$.

Denote the path from q_0 to q_1 by x

Denote the path from q_1 to q_1 by y

Denote the path from q_1 to q_2 by z

We can say that each word $w \in L$ is xy^iz.
Another example

All the strings over Σ^*

In this case x and z can be ε.

For any word of length ≥ 1, y is not ε.
Finite Languages

Let’s consider the following automaton:

![Automaton Diagram]

A has 4 states. \(L(A) \) is all words of length 2 or less. \(L(A) \) is regular, however, does the pumping lemma work here???

Theorem: For a DFA A, if \(L(A) \) is finite, and the number of states in A is \(n \), then the longest word in \(L \) has length < \(n \)

Proof: if \(\exists (w \in L \text{ and } |w| \geq n) \) then \(\exists (w=xyz) \) s.t. \(1+2+3 \) exists, thus \(L \) is infinite.
Usage of the Pumping Lemma

The main usage of pumping lemma is to prove that some language is not regular.

The technique:

1. Assume that the language is regular.
2. Assume some n, and find a string w that has a length greater than n.
3. Show that for any partition of w into x,y,z such that properties 1 and 2 of pumping lemma hold, there exists an i such that xy^iz is not in the language.
Caveats

- The Lemma:

 If L is regular, then there exists n, s.t. $\forall (w \in L \text{ and } |w| \geq n)$, there exists $(w=xyz)$ s.t. $1+2+3$ exists.

- $\text{regular}(L) \implies \text{lemma}(L)$.

- $\text{lemma}(L) \nRightarrow \text{regular}(L)$.

- $\sim\text{lemma}(L) \implies \sim\text{regular}(L)$.

- In order to show that L is non-regular, one has to show that $\forall n$, there exists $(w \in L \text{ and } |w| \geq n)$ s.t. $\forall (w=xyz)$, ~1 or ~2 or ~3.
Caveats

• The Lemma:

 If L is regular \(\exists n, \text{ s.t. } \forall (w \in L \text{ and } |w| \geq n) \exists (w=xyz) \text{ s.t. } 1+2+3 \) exists.

• regular(L) \(\Rightarrow \) lemma (L).

• lemma (L) \(\not\Rightarrow \) regular(L).

• \(\sim\)lemma(L) \(\Rightarrow \) \(\sim\)regular(L).

• In order to show that L is non-regular, one has to show that \(\forall n, \exists (w \in L \text{ and } |w| \geq n) \text{ s.t. } \forall (w=xyz), \sim 1 \text{ or } \sim 2 \text{ or } \sim 3 \)
Common Mistakes

• \(\exists w \in L \text{ s.t. } \text{lemma}(w) \Rightarrow \text{regular}(L) \)

• \(\forall w \in L, \text{lemma}(w) \Rightarrow \text{regular}(L) \)

• \(\exists w \in L \text{ and } \exists (w=xyz) \text{ s.t. } xy^iz \notin L \Rightarrow \sim \text{regular}(L) \)
 (you must show for all possible decompositions)

• \(\exists w \in L \text{ and } \forall (w=xyz) \text{ xy}^iz \notin L \Rightarrow \sim \text{regular}(L) \)
 (|w| might be smaller than n)
L = \{0^m1^m \mid m>0\}

• We will use the pumping lemma to show that \(L = \{0^m1^m \mid m>0\}\) is not regular.

• Assume to the contrary that \(L\) is regular.

• Let \(n\) be the number promised by the pumping lemma.

• Consider \(w = 0^n1^n\).

• \(w\) is in \(L\), \(|w|>n\) so by the pumping lemma \(w\) can be divided into three parts \(w=xyz\).
L = \{0^m1^m \mid m > 0\} \text{ (cont.)}

- x and y are both in prefix of length n and so are consist of 0's.
- Denote the length of x by s and the length of y by t.
- Then:
 - \(x = 0^s\), \(s \geq 0\)
 - \(y = 0^t\), \(t \geq 1, s + t \leq n\)
 - \(z = 0^{n-s-t}1^n\)
- By the pumping lemma if the language is regular then \(x y^i z\) is in L for any i.
\(L = \{0^m1^m \mid m > 0\} \) (cont.)

• Take \(i = 2 \).
• The resulting word is \(xy^2z = 0^s0^{2t}0^{n-s-t}1^n = 0^{n+t}1^n \).
• It is not in \(L \) as \(t \geq 1 \) and the number of 0 is greater than the number of 1.
• Thus we have a contradiction to the pumping lemma.
• That means: our assumption that \(L \) is regular is wrong.
• \(L \) is not a regular language. Q.E.D.
L=$\{a^k! \mid k \geq 0\}$

- Is $L=$\{ak! $\mid k \geq 0\}$ regular?
- We will use the pumping lemma to show that L is not regular.
- Assume to the contrary that L is regular.
- Let n be the number promised by the pumping lemma.
- We choose $w= a^{n!}$ where $n=\max(n,2)$.
- w is in L, $|w| \geq n$ so by the pumping lemma w can be divided into three parts $w=xyz$.
\[L = \{ a^k \mid k \geq 0 \} \]

- x and y consist of a's.
- Denote the length of x by s and the length of y by t.
- Then:
 - \(x = a^s, \quad s \geq 0 \)
 - \(y = a^t, \quad t > 0, \quad s + t \leq n \)
 - \(z = a^{n!-t-s} \)
- By the pumping lemma if the language is regular then \(xy^iz \) is in L for any i.
\[L=\{a^k \mid k \geq 0\} \]

• Take \(i=2 \).
• The resulting word is \(xy^2z = a^{n!+t} \).
• We know that \(t>0 \) and \(t \leq n \), which means
 \[
n!+t \leq n!+n < n!+(n+1) < n!^*(n+1) = (n+1)!\]
• Thus we have a contradiction to the pumping lemma, contradicting our assumption that \(L \) is regular.
\[L = \{0^m1^n \mid m > n\} \]

- Assume \(L \) is regular.
- Let \(p \) be the number promised by the Lemma.
- Let \(w = 0^{p+1}1^p \)
- \(w \) can be split \(w \) into \(xyz \).
- Since \(|xy| \leq p \), \(y \) consists of only 0s, \(|y| > 0 \).
- \(\implies \#_0(xy^0z) \leq \#_1(xy^0z) \)
- \(\implies xy^0z \notin L \) contradicting the pumping lemma.
- \(\implies L \) is non-regular.
\[L = \{ w \mid \#_1(w) = \#_0(w) \} \]

• Is L regular? (no!)

• **Proof idea:**
 – Assume to the contrary that L is regular.
 – By the pumping lemma we have \(n \) s.t. …
 – Choose \(w=0^n1^n \in L \)
 – Pump \(w \) towards \(w' \notin L \)

• **Problem:** if we choose \(y=0^n1^n \) then \(w' \in L \) ??
\[L = \{w \mid \#_1(w) = \#_0(w)\} \]

- Is \(L \) regular? (no!)

- **Proof**:
 - Regular languages are close under intersection.
 - Assume to the contrary that \(L \) is regular.
 - It gives \(L' = (0^*1^* \cap L) \) is regular.
 - But \(L' = 0^n1^n \) is not regular!
 - \(L \) is non-regular
L = \{ww \mid w \in \{0,1\}^* \}

• Is L regular? (no.)

• **Proof idea:**
 – Assume to the contrary that L is regular.
 – By the pumping lemma we have n s.t. …
 – Choose $w=0^n10^n1 \in L$
 – Pump w towards $w' \notin L$
A language is NOT regular if it does not satisfy the Pumping Lemma

A language is regular if it has a DFA/NFA/RE recognizing it
Regular Languages: Recap

- Finite Automata \((Q, \Sigma, \delta, q_0, F)\)
- Regular languages
- Closures (union, intersection, complements, minus)
- Non deterministic automaton: \(\delta: Q \times \Sigma \times \epsilon \rightarrow 2^Q\)
- Equivalence \(DFA \leftrightarrow NFA\)
- Closures (concatenation, Kleene star).
- Regular Expressions
- Equivalence \(DFA \leftrightarrow RE\)
- Minimal DFA
- Pumping Lemma.